ATR-FTIR study of water in Nafion membrane combined with proton conductivity measurements during hydration/dehydration cycle.

نویسندگان

  • Keiji Kunimatsu
  • Byungchan Bae
  • Kenji Miyatake
  • Hiroyuki Uchida
  • Masahiro Watanabe
چکیده

We have conducted combined time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) and proton conductivity measurements of Nafion NRE211 membrane during hydration/dehydration cycles at room temperature. Conductivity change was interpreted in terms of different states of water in the membrane based on its δ(HOH) vibrational spectra. It was found that hydration of a dry membrane leads first to complete dissociation of the sulfonic acid groups to liberate hydrated protons, which are isolated from each other and have δ(HOH) vibrational frequency around 1740 cm(-1). The initial hydration is not accompanied by a significant increase of the proton conductivity. Further hydration gives rise to a rapid increase of the conductivity in proportion to intensity of a new δ(HOH) band around 1630 cm(-1). This was interpreted in terms of formation of channels of weakly hydrogen-bonded water to combine the isolated hydrophilic domains containing hydrated protons and hydrated sulfonate ions produced during the initial stage of hydration. Upon dehydration, proton conductivity drops first very rapidly due to loss of the weakly hydrogen bonded water from the channels to leave hydrophilic domains isolated in the membrane. Dehydration of the protons proceeds very slowly after significant loss of the proton conductivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methanol crossover and selectivity of nafion/heteropolyacid/montmorillonite nanocomposite proton exchange membranes for DMFC applications

In this work, we prepared the nafion/montmorillonite/heteropolyacid nanocomposite membranes for direct methanol fuel cells (DMFCs). The analyses such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) were conducted to characterize the filler dispersion and membrane structure in prepared nanocomposite membranes. XRD patterns of nafion-CsPW-MMT ...

متن کامل

Modified CNTs/Nafion composite: The role of sulfonate groups on the performance of prepared proton exchange methanol fuel cell’s membrane

A novel Nafion®-based nanocomposite membrane was synthesized to be applied as direct methanol fuel cells (DMFCs). Carbon nanotubes (CNTs) were coated with a layer of silica and then reacted by chlorosulfonic acid to produce sulfonate-functionalized silicon dioxide coated carbon nanotubes (CNT@SiO2-SO3H). The functionalized CNTs were then introduced to Nafion®, and subsequently, methanol permeab...

متن کامل

Does thermal treatment merely make a H2O-saturated Nafion membrane lose its absorbed water at high temperature?

Investigating the dehydration process of a Nafion membrane helps to understand the mechanism of the decrease in its proton conductivity under high-temperature and low-humidity conditions. Herein, the influence of thermal treatment on a H2O-saturated Nafion membrane was in situ studied by FTIR spectroscopy. With the aid of generalized two-dimensional correlation spectroscopy (2Dcos), the microst...

متن کامل

Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications

Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...

متن کامل

Atomistic simulation of water percolation and proton hopping in Nafion fuel cell membrane.

We have performed a detailed analysis of water clustering and percolation in hydrated Nafion configurations generated by classical molecular dynamics simulations. Our results show that at low hydration levels H(2)O molecules are isolated and a continuous hydrogen-bonded network forms as the hydration level is increased. Our quantitative analysis has established a hydration level (λ) between 5 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 115 15  شماره 

صفحات  -

تاریخ انتشار 2011